Hepatogenic engineering from human bone marrow mesenchymal stem cells in porous polylactic glycolic acid scaffolds under perfusion culture.
نویسندگان
چکیده
Bone marrow mesenchymal stem cells (MSCs) are promising candidates for cell therapy and tissue engineering. We used mesenchymal stem cells from human bone marrow (hMSCs) as the seeding cells to investigate the potential of hepatocytic differentiation of hMSCs in porous polylactic glycolic acid (PLGA) scaffolds under perfusion induction. hMSCs were seeded and proliferated in PLGA scaffolds, and then induced into hepatocyte-like cells with hepatogenic medium in perfusion and static cultures. The results showed that hMSCs could be induced into hepatocyte-like cells in PLGA scaffolds with hepatogenic medium in both static and perfusion induction systems. However, perfusion induction was more effective for cellularity in PLGA scaffolds than in static induction. Cells in the scaffold induced by the hepatogenic medium expressed hepatocyte-specific genes cytokeratin 19 (CK19), α-fetoprotein (αFP), cytokeratin 18 (CK18), albumin and cytochrome P4503A4 (CYP3A4) in a time-dependent manner. Induced cells stained positive for αFP and albumin. Induced cells also acquired the functional characteristics of hepatocytes, i.e. secretion of urea and albumin. In a comparison of survival and hepatogenic differentiation of hMSCs between perfusion and static induction, perfusion induction increased the survival and the uniform distribution of induced cells in scaffolds, which resulted in a higher efficiency of hepatogenesis in the PLGA construct with hMSCs. The oscillatory perfusion induction system combined with the hepatogenic medium should be a valuable and convenient tool for in vitro hepatic tissue engineering using hMSCs.
منابع مشابه
Laminin matrix promotes hepatogenic terminal differentiation of human bone marrow mesenchymal stem cells
Objective(s):The application of stem cells holds great promises in cell transplants. Considering the lack of optimal in vitro model for hepatogenic differentiation, this study was designed to examine the effects of laminin matrix on the improvement of in vitro differentiation of human bone marrow mesenchymal stem cells (hBM-MSC) into the more functional hepatocyte-like cells. Materials and Met...
متن کاملComparison of Proliferation and Osteoblast Differentiation of Marrow-Derived Mesenchymal Stem Cells on Nano- and Micro-Hydroxyapatite Contained Composite Scaffolds
Bones constructed by tissue engineering are being considered as valuable materials to be used for regeneration of large defects in natural bone. In an attempt to prepare a new bone construct, in this study, proliferation and bone differentiation of marrow-derived mesenchymal stem cells (MSCs) on our recently developed composite scaffolds of nano-, micro-hydroxyapatite/ poly(l-lactic acid) were ...
متن کاملPreparation and investigation of polylactic acid, calcium carbonate and polyvinylalcohol nanofibrous scaffolds for osteogenic differentiation of mesenchymal stem cells
Objective(s): In this study, the effect of electrospun fiber orientation on proliferation and differentiation of mesenchymal stem cells (MSCs) was evaluated. Materials and Methods: Aligned and random nanocomposite nanofibrous scaffolds were electrospun from polylactic acid (PLA), poly (vinyl alcohol) (PVA) and calcium carbonate nanoparticles (nCaP). The surface morphology of prepared nanofibrou...
متن کامل3D PLGA scaffolds improve differentiation and function of bone marrow mesenchymal stem cell-derived hepatocytes.
UNLABELLED Liver tissue engineering with hepatic stem cells provides a promising alternative to liver transplantation in patients with acute and chronic hepatic failure. In this study, a three-dimensional (3D) bioscaffold was introduced for differentiation of rat bone marrow mesenchymal stem cells (BMSCs) into hepatocytes. For hepatocyte differentiation, third passage BMSCs isolated from normal...
متن کاملEvaluation of In Vitro Differentiation of Cardiomyocyte-like cells Derived from Human Bone Marrow Mesenchymal Stem Cells
Purpose: To investigate the in vitro differentiation process of cardiomyocyte-like cells derived from human bone marrow mesenchymal stem cells under the influence of 5-azacytidine (5-aza). Materials and Methods: After purification, human bone marrow mesenchymal stem cells were exposed to 5-aza at a concentration of 5 μmol for 5 weeks to induce cardiomyocyte differentiation. To induce differenti...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of tissue engineering and regenerative medicine
دوره 6 1 شماره
صفحات -
تاریخ انتشار 2012